Some charge is being given to a conductor. Then its potential is

  • [AIPMT 2002]
  • A

    maximum at surface

  • B

    maximum at centre

  • C

    remain same throughout the conductor

  • D

    maximum somewhere between surface and centre

Similar Questions

Three charged concentric nonconducting shells are given as shown in figure. Find the potential at point $A$

Consider a sphere of radius $R$ with uniform charge density and total charge $Q$. The electrostatic potential distribution inside the sphere is given by $\theta_{(r)}=\frac{Q}{4 \pi \varepsilon_{0} R}\left(a+b(r / R)^{C}\right)$. Note that the zero of potential is at infinity. The values of $(a, b, c)$ are

  • [KVPY 2020]

Three concentric metal shells $A, B$ and $C$ of respective radii $a, b$ and $c (a < b < c)$ have surface charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. The potential of shell $B$ is

  • [JEE MAIN 2018]

Electric field at a point $(x, y, z)$ is represented by $\vec E = 2x\hat i + {y^2}\hat j$ if potential at $(0,0,0)$ is $2\, volt$ find potential at $(1, 1, 1)$

A charge is spread non-uniformly on the surface of a hollow sphere of radius $R$, such that the charge density is given by $\sigma=\sigma_0(1-\sin \theta)$, where $\theta$ is the usual polar angle. The potential at the centre of the sphere is

  • [KVPY 2009]